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A Capacities and neo-additive capacities

Given a finite space X and its correspondent power set 2X , a capacity v : 2X → R+ is a function

that satisfies

v(φ) = 0,

v(A) ≤ v(B) if A⊆ B,

v(X) = 1.

A capacity is said to be convex if v(A)+ v(B)≤ v(A∪B)+ v(A∩B) (concave if the relation holds

with ≥). Hence, capacities do not necessarily comply the additivity law of probabilities. Inte-

grating a function f : X → R with respect to a capacity v (the analog of an expectation in the

additive probability framework) is done by using Choquet integrals (Choquet, 1954). When the

capacity is additive, the Choquet integral is equivalent to the Riemann integral. Capacities can
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capture ambiguous beliefs since, given their non-additivity, the sum of the likelihood assigned to

the realization of the different states does not necessarily add to one.

A neo-additive capacity, proposed by Chateauneuf et al. (2007), is a particular type of capacity

defined by

v(A) := (1−δ )π(A)+δ µ
N
1−α(A),

for all A ⊂ X , where δ ∈ [0,1], π is an additive probability distribution defined over X , and µN
1−α

is a Hurwicz capacity exactly congruent with N ⊂ X with an 1−α ∈ [0,1] degree of optimism,

defined by1

µ
N
1−α(A) =


0 if A ∈N ,

1−α if A /∈N and S\A /∈N ,

1 if S\A ∈N ,

where S is the set of all possible states and N ⊂ X is the set of null events, i.e., the set of states

whose realization is impossible. Chateauneuf et al. (2007) show that the Choquet integral of a

neo-additive capacity is given by (1) and that axiomatizes a utility function under ambiguity.

B Proof of Proposition II

Assume that s−i,−1 = c for i = 1,2. Therefore, history allows asking about the conditions for

sustaining the cooperative sequence as a dynamic equilibrium. We say ({sit = c})∞

t=0 for i = 1,2 is

an equilibrium if the present value of always cooperating is larger than or equal to the present value

of deviating from the cooperative agreement and then being punished by the proposed scheme.

Always-cooperating strategy In t = 0 the expected payoff of the cooperative agreement is

v∗c := δ ((1−α)M(c)+αm(c))+(1−δ )u(c,c).

In t = 1, the individual sees what the counterpart played in t = 0. If the counterpart played c

in the previous period, then the individual keeps playing c and makes no update on the parameters.

1Consequently, α denotes the degree of pessimism (ambiguity aversion).
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Therefore, the expected payoff is again v∗c . The individual predicts that this will happen with

probability φc, which is bounded from below by (1−δ ).2 If the counterpart deviated in the previous

period (i.e., played any action s−i ∈ S different from c), then the individual punishes the counterpart

by playing n and updates the ambiguity parameter, δ , to 1. This situation gives an expected payoff

of

vu
n := (1−α)M(n)+αm(n).

Then, the expected payoff of the cooperative agreement in t = 1, seen from t = 0, is given by φcv∗c +

(1−φc)vu
n. Note that once parameters are updated they are no longer revised, as the individual plays

n forever and does not make any further updates, regardless of the other player’s future actions.

A similar argument is applied recursively for future periods. If the counterpart played c in t = 0

and, therefore, the individual plays c in t = 1, in t = 2 sees what the counterpart played in t = 1

and decides how to behave following the rule described above. Hence, the expected payoff of the

cooperative agreement in t = 2, seen from t = 0, is φ 2
c v∗c + φc(1− φc)vu

n +(1− φc)vu
n = φ 2

c v∗c +

(1− φ 2
c )v

u
n. Similar calculations allow to conclude that the expected payoff of the cooperative

equilibrium in t = T , seen from t = 0, is φ T
c v∗c +(1−φ T

c )v
u
n.

Thereby, given the subjective discount factor, β , the present value at t = 0 of playing the

cooperative strategy is

PVc = v∗c +β [φcv∗c +(1−φc)vu
n]+β

2 [
φ

2
c v∗c +(1−φ

2
c )v

u
n
]
+ ...

= v∗c
[
1+βφc +(βφc)

2 + ...
]
+ vu

n
[
β (1−φc)+β

2(1−φ
2
c )+ ...

]
= v∗c ∑

s≥0
(βφc)

s +βvu
n ∑

s≥0
β

s−βφcvu
n ∑

s≥0
(βφc)

s

=
v∗c−βφcvu

n
1−βφc

+
βvu

n
1−β

. (B.1)

Deviating strategy In t = 0, the expected payoff of deviating from the cooperative agreement is

v∗d := δ ((1−α)M(d)+αm(d))+(1−δ )u(d,c).

2It could be higher, for example, if M(c) = u(c,c).
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After deviating, the individual knows that the counterpart will punish her by playing n forever, so

she will play n forever as well. Nevertheless, other player’s actions may induce updating on the

individual’s parameters if they do not match the expected behavior. The other player’s expected

behavior in t = 0 is to play c (which the individual predicts will happen with probability φc), and

in t ≥ 1 is to play n (which the individual predicts will happen with probability φn, which is also

bounded from below by (1−δ )).3

In t = 1 the individual sees what the counterpart played in t = 0. If the counterpart played c in

the previous period, then the individual makes no update and perceives an expected payoff of

v∗n := δ ((1−α)M(n)+αm(n))+(1−δ )u(n,n).

If the counterpart played any action s−i ∈ S different from c in the previous period, then the in-

dividual updates the ambiguity parameter to 1 and perceives an expected payoff of vu
n. Again, in

the latter situation, parameters will not revised. Adding up, the expected payoff of the deviating

strategy in t = 1, seen from t = 0, is φcv∗n +(1−φc)vu
n.

Again, a recursive argument is followed. If the counterpart played c in t = 0 and, therefore,

the individual made no update in t = 1, in t = 2 the player sees what the counterpart played in

t = 1 and decides how to behave. If the counterpart played n, then the individual makes no update

and perceives an expected payoff of v∗n. Conversely, if the counterpart deviated from the expected

behavior, then the expected payoff is vu
n. Hence, the expected payoff of the deviating strategy in

t = 2, seen from t = 0, is φcφnv∗n + φc(1− φn)vu
n +(1− φc)vu

n = φcφnv∗n +(1− φcφn)vu
n. Similar

calculations allow to conclude that the expected payoff of the deviating strategy in t = T , seen

from t = 0, is φcφ
(T−1)
n v∗n +

(
1−φcφ

(T−1)
n

)
vu

n.

Thereby, given the subjective discount factor, β , the present value of playing the deviating

3It could be higher, for example, if m(n) = u(n,n).
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strategy is

PVd = v∗d +β [φcv∗n +(1−φc)vu
n]+β

2 [φcφnv∗n +(1−φcφn)vu
n]+ ...

= v∗d +βφcv∗n
[
1+βφn +(βφn)

2 + ...
]
+βvu

n
[
1+β +β

2 + ...
]
−βφcvu

n
[
1+βφn +(βφn)

2 + ...
]

= v∗d +βφcv∗n ∑
s≥0

(βφn)
s +βvu

n ∑
s≥0

β
s−βφcvu

n ∑
s≥0

(βφn)
s

= v∗d +
βφc(v∗n− vu

n)

1−βφn
+

βvu
n

1−β
. (B.2)

Putting together (B.1) and (B.2) yields (7). �

C Comparative statics in the repeated PD with α = 0.5

In the PD

v∗c = δ ((1−α)R+αQ)+(1−δ )R, (C.1)

v∗n = δ ((1−α)T +αP)+(1−δ )P, (C.2)

v∗d = δ ((1−α)T +αP)+(1−δ )T. (C.3)

With α = 0.5, φn = φc = φ = 1−δ/2. When φc = φn = φ , (7) is reduced to

v∗c−βφv∗n
1−βφ

≥ v∗d,

which implies that,

β
∗ = φ

−1

(
v∗d− v∗c

)(
v∗d− v∗n

) , (C.4)

Using (C.1), (C.2), (C.3), and (C.4), we have that

β
∗ =

φ 2(T −R)+ φδ

2 (P−Q)

(1−δ )(T −P)
.

The objective is to determine the sign of ∂β ∗

∂δ
. This is the derivative of a ratio, so the sign is
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determined by the sign of the numerator of the derivative, which is[
2φ

∂φ

∂δ
(T −R)+

(P−Q)

2

(
φ +

∂φ

∂δ
δ

)]
(1−δ )(T −P)+

[
φ

2(T −R)+
φδ

2
(P−Q)

]
(T −P).

The first bracket is the only expression with undefined sign (all the rest are positive). Then, if

it is positive, then ∂β ∗

∂δ
> 0. Since ∂φ

∂δ
=−1

2 , the first bracket is equivalent to

P
(1−δ )

2
−Q

(1−δ )

2
−T

(
1− δ

2

)
+R

(
1− δ

2

)
.

Adding and subtracting Qδ

4 , the previous expression can be written as

P
(1−δ )

2
+

(
R− (Q+T )

2

)(
1− δ

2

)
+

T
2

(
1− δ

2

)
+

Qδ

4
,

which is positive since R > Q+T
2 . Then, we conclude that ∂β ∗

∂δ
> 0.

D Duopoly models: Derivations

D.1 Cournot model

The objective function –equation (9)– has discontinuities since the price (i) depends on the firm’s

production, and (ii) is bounded from below by zero. In these cases, the strategy is to solve the

problem in the different scenarios (including the kinks), checking that the solutions lie within

the relevant strategy space, and then, for each parametrization, choose the feasible solution that

maximizes the expected profits.

Case 1 Assume that the price is positive in both cases. Taking the first order condition leads to

the following reaction function

q(q j) =
δ (1−α)A+(1−δ )(A−bq j)− k

2b(1−δα)
.
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The fixed point of this reaction function is q = δ (1−α)A+(1−δ )A−k
2b(1−δα)+b(1−δ ) . This optimization assumes that

max
{

A−b(q+q j),0
}
= A− b(q+ q j). Then, solutions are feasible if (i) when computing qn

using the non-symmetric assumption, qn ≤ 2A+k
3b , (ii) when computing qn using the symmetric

assumption, qn ≤ A
2b , and (iii) when computing qd , qd ≤ 3A+k

4b .

Case 2 When q is above the thresholds, the objective function is δ (1−α)max{A−bq,0}q−kq.

Regardless of the situation, the solution is q∗ = δ (1−α)A−k
2bδ (1−α) which is always smaller than A

b and,

therefore, the second kink is redundant.

D.2 Bertrand model

The objective function –equation (10)– has discontinuities since the quantity (i) depends on the

firm’s price, and (ii) is bounded from below by zero. In these cases, the strategy is to solve the

problem in the different scenarios (including the kinks), checking that the solutions lie within

the relevant strategy space, and then, for each parametrization, choose the feasible solution that

maximizes the expected profits.

Case 1 Assume that the quantity is positive in all cases. Taking the first order condition leads to

the following reaction function

p(p j) =
a+b1

[
(1−δ )p j +δ (1−α)K +δαk

]
+b2k

2b2
.

The fixed point of this reaction function is p = a+b1(δ (1−α)K+δαk)+b2k
2b2−b1(1−δ ) . This optimization assumes

that max{a+b1k−b2 p,0} = a+ b1k− b2 p. Then, solutions are feasible if p ≤ a+b1k
b2

. Note that

under our simplifying assumption that K = a/b2, this threshold is never met.

Case 2 When p is above the threshold, the objective function is (p−k)(δ (1−α)max{a+b1K−b2 p,0}
+(1−δ )max

{
a+b1 p j−b2 p,0

})
. Assume that the quantity is positive in both cases. Taking the

first order condition leads to the following reaction function

p(p j) =
a

2b2
+

b1
(
δ (1−α)K +(1−δ )p j

)
2b2(1−δα)

+
k
2
.
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The fixed point of this reaction function is p= (a+b2k)(1−δα)+b1δ (1−α)K
2b2(1−δα)−b1(1−δ ) . This optimization assumes

that max
{

a+b1 p j−b2 p,0
}
= a+b1 p j−b2 p. Then, solutions are feasible if (i) when computing

pn using the non-symmetric assumption, a+b1k
b2
≤ pn ≤ 1

b2

(
a+ b1(a+b2k)

2b2−b1

)
, (ii) when computing pn

using the symmetric assumption, a+b1k
b2
≤ pn ≤ a

b2−b1
, and (iii) when computing pd , a+b1k

b2
≤ pd ≤

1
b2

(
a+ b1

2

(
a

b2−b1
+ k
))

.

Case 3 When p is above the thresholds, the objective function is (p−k)δ (1−α)max{a+b1K−b2 p,0}.
Assume the quantity is positive. Then, the solution is p∗ = a+b1K+b2k

2b2
. In this case, quantity is pos-

itive whenever a+b1K−b2 p > 0. Then, p = a+b1K
b2

defines an additional kink. For any p≥ a+b1K
b2

,

the expected profit is zero.

D.3 Solution

To numerically solve these maximization problems, for every (δ ,α) combination, we (i) compute

the optimal quantity/price in the different cases, (ii) check that the optimal quantity/price is consis-

tent with the thresholds, (iii) compute the expected profits for all feasible cases (including kinks),

and (iv) select the feasible case that gives the highest profit.
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